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Multiple Mixing Layers
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Single and Multiple Mixing Layers

The evolution of mixing layer is a well studied problem in different frameworks, referring to several geometrical
constraints and to very broad field of applications.

A synthesis of one dimensional evolution is given here since this a sufficient scheme to envisage the physics of the
process and its insert in more complex models.

The same information can be obtained for multidimensional conditions if this implementation is required, but it makes
the analysis and the control of more complicated process.

Whatever conservative quantity, for instance the mixture fraction Z, can only be transported. In reference coordinates
fixed in the or(ijgin on the interface and oriented with one axis perpendicularly to the interface, the mixture fraction
along this coordinate is given by the following equation:

Z=%[1+erf(f=%)]

where erf is the error function, x is the coordinate normal to the interface and &, Is mixing layer thickness,
given by:

SR2 Where y is the
Om = V4Dt xy, Y = Stretching factor
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Single and Multiple Mixing Layers
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Double Mixing Layers
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Double Mixing Layers
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Mixture Fraction

09

08

07

o
o

o
L]

o
=

o
w

02

01

Multiple Mixing Layers

Mixture Fraction evolution with time for & single diffuswve layer
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Multiple Mixing Layers

Mixture Fraction evolution with time for & trple diffusve layer
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Double Mixing Layers
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Double Mixing Layers
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Partially premixed turbulent combustion

Partially premixed combustion combines the formulations for
premixed and non-premixed combustion proceses. In this kind of
flames when the laminar burning velocity 1s plotted as a function of
mixture fraction the maximum lies close to stoichiometric mixture.
Theretore, tlames will propagate the tastest along surfaces for which
/.(x; t)= Zst in a mixture field. If such a surface exists in a partially
premixed field, flame propagation generates a flame structure that 1s

called triple flame.
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TRIPLE FLAMES - STRUCTURE
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The leading edge of the flame, called the triple point, propagates along the surface of stoichiometric

mixture. On the lean side of that surface there is a lean premixed flame branch and on the rich side there is
a rich premixed flame branch, both propagating with a lower burning velocity. Behind the triple point, on
the surface of stoichiometric mixture, a diffusion flame develops where the unburnt intermediates like H2

and CO from the rich premixed flame branch burn with the remaining oxygen from the lean premixed

. flame branch.
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TRIPLE FLAMES

A flame propagating through a fuel/air mixing layer, especially when the fuel
concentration 1s stratified ranging from lean to rich, may exhibit a triple (or sometimes
called tribrachial) flame structure, which is composed of a lean and a rich premixed

flame wing together with a trailing diffusion flame, all extending from a single point.

Mixing layers are frequently encountered in combustion problems including two-
dimensional (2-D) mixing layers, heterogeneous propellant combustion, opposed
flame spread, jets, and boundary layers. Tribrachial flames can also be relevant to
inhomogeneously charged premixed conditions, such as autoignition fronts in diesel
engines or flame fronts in direct injection gasoline engines, and possibly in premixed-
charge compression ignition (PCCI) and stratified-charge compression ignition (SCCI)

engines.
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TRIPLE FLLAMES

Observed tribrachial flames in various tflow configurations; (a) 2-D mixing layer,

(b) laminar jet, c) cylindrical boundary layer, and (d) flame spread

15:10:10:00
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TRIPLE FLLAMES - STRUCTURE
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Methane-air triple flame stabilized in a laminar round jet 44
mm above the triple flame burner. The burner generates a
staged mixture by issuing a central flow of diluted tuel,
surrounded by a lean co-flow, which 1s again surrounded by an
air co-flow. These three mixtures have interdiffused at the
stabilization height to form a partially premixed mixture
ranging between Z = 0.15 on the centerline and Z = 0 in the
air co-flow. Due to dilution of the central flow the
stoichiometric mixture fraction is 0.0789. One can clearly
distinguish 1n Figure the bright rich premixed flame in the
center, the broad diffusion flame surrounding it and extending
further downstream and the thin lean premixed branches
outside.

Triple flames are always curved at the triple point. This is due
to the fact that the burning velocity decreases as one moves
from the stoichiometric contour to the lean and the rich. The
triple point therefore propagates faster against the oncoming
flow and the rich and lean premixed flame branches stay

behind.
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TRIPLE FILLAMES

Figure 6.6: Triple flame visualization in a laminar flow (Kioni et a

1.276).
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TRIPLE FLLAMES
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TRIPLE FLLAMES
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TRIPLE FLAMES
Propagation speed
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LIFTED FLAMES

The tribrachial structure at the base of lifted flame dictates that the characteristics of tribrachial point control the
stabilization. The coexistence of three different types of flames implies that the edge is located along the

stoichiometric contour and has the characteristics of propagation.
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LIFTED FLAMES
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of stoichiometnic mixture
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Figure 4 9: Schematic presentation of a lifted jet diffusion flame.
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LIFTED FLLAMES

In practical systems, where fuel and oxidizer are supplied in two separate streams, it is often
advantageous to run at high flow rates and stabilize the flame further downstream within the
jet. Lifting the flame base off the burner has the advantage of (1) avoiding thermal contact
between the flame and the nm and (1) enhancing mixing in the dead-space. Conditions for
stabilization, are of practical importance.
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LIFTED FLAMES

Lift off Height - Methane/air Flame
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TRIPLE FLAME PROPAGATION

When the laminar burning velocity 1s plotted as a function of mixture fraction

there 1s a maximum burning velocity that lies close to the stoichiometric mixture.
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TRIPLE FLAME PROPAGATION
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TRIPLE FLAME PROPAGATION

1. lIgnition occured in the vicinity of the
stoichiometric line in regions where the
scalar dissipation rate was low.

2. Two premixed flame fronts containing lean
and rich branches propagate in opposite
directions along the stoichiometric lines. They
have the shapes of arrow-heads.

3. A diffusion flame develops on the
stoichiometric line between the premixed
flames. The tails of the premixed flames are
lying nearly parallel to the diffusion flame and
are propagating into the lean and rich mixture.
As they depart from the diffusion flame they
become weaker and finally disappear.

4. When premixed flame fronts try to
propagate into regions of very high scalar
dissipation rates, local extinction is likely to
occur.

5. The dissipation rate and the heat release
rate are inversely correlated. Maximum values
of the dissipation rate correspond to minimum
levels of heat release and vice versa.

41 Giancarlo Sorrentino
University “Federico II” of Naples

TN
H|o H




TRIPLE FLAME PROPAGATION

It is concluded that the conditional mean value of the scalar
dissipation rate at stoichiometric mixture controls ignition and
subsequent flame propagation in partially premixed systems.
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TRIPLE FLAME PROPAGATION

blow-up of the
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TRIPLE FLAME PROPAGATION

interaction with a single vortex
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TRIPLE FLAME PROPAGATION

interaction with two vortex pairs

Diffusion
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